Ir al contenido principal

Psammites.


La ciencia refuta a la lengua, ataca directamente a las categorías gramaticales y desmonta la antonimia de sustantivos contables-incontables: todos son contables.

Los típicos ejemplos del agua ("son incontables las gotas de los océanos"), de las estrellas ("incontables como las estrellas del cielo") o la arena ("Tu descencencia será incontable como las arenas del desierto") ... se someten al poder conceptual de las matemáticas. La primera noticia de un contador de arena que se conoce tuvo lugar hace más de 2.200 años.

"Existen algunos, Rey Gelón, que creen que el número de granos de arena es infinito en multitud; y cuando me refiero a la arena me refiero no sólo a la que existe en Siracusa y el resto de Sicilia sino también la que se puede encontrar en cualquier región, ya sea habitada o deshabitada. Una vez más, hay algunos que, sin considerarlo como infinito, creen que ningún número ha sido nombrado que sea lo suficientemente grande como para superar tal magnitud. Y, está claro que, los que sostienen esta opinión, si se imaginaron una masa formada por arena tan grande como la masa de la tierra, incluyendo todos los mares y los huecos de la tierra hasta llenarlos a una altura igual a la de la más alta de las montañas, sería ir mucho más lejos aún del reconocimiento de que cualquier número que pueda expresarlo fue superado por la multitud de arena para tomar.
Pero voy a tratar de mostrar, por medio de demostraciones geométricas que usted será capaz de seguir que, de los números nombrados por mí y, teniendo en cuenta el trabajo que he enviado a Zeuxipo, algunos superan no sólo el número de la masa de arena de igual magnitud que la tierra llenada en la manera descrita, sino también la de la masa de igual magnitud que la del universo"


Arquímedes (Archimes Syracusani arenarius y circuli Dimensio)
 El rey Gelo, hijo de tirano Herión, conocía y admiraba a Arquímedes. Éste lo había impresionado ya de niño, cuando acompañaba a su padre a visitar las defensas de Siracusa ante los asedios romanos. Contemplar su trabajo con las catapultas, sus avances en la potencia y alcance de los proyectiles (nadie había osado construir una catapulta que arrojara piedras de cuatro talentos), su mágico caracol de agua, sus juguetes mecánicos... Aquel niño, ahora rey, se complacía en visitarle y mantener correspondencia con el insigne matemático y brillante ingeniero. Tanto su padre Herión, que tanto había hecho por Siracusa, como él tomaron con sumo interés las clases de matemáticas que, a veces el mismo Arquímedes, les impartía. Arquímedes les correspondía y ahora le planteaba un juego intelectual inaudito: contar el número de granos de arena que cabían en el Universo. El asunto parecía baladí. ¿Qué interés puede tener conocer una cifra inabarcable e inútil? Pero, todos los siracusanos, habían aprendido que de alguna manera que ellos no comprendían, que los retos intelectuales a los que sometía su mente acababan teniendo efectos prácticos aunque fuera a largo plazo, así que le dejaban hacer.

Arquímedes afrontó el reto con la metodología científica que ya había explicado a sus colegas de la biblioteca de Alejandría y en apenas 8 pliegos desarrolló una investigación teórica sobre papel y basada en el conocimiento entonces existente de los límites del universo. Para poder afrontar el problema hubo de diseñar un sistema de numeración nuevo, pues los griegos apenas conocían números mayores que la miríada (10000). Su sistema de numeración utilizaba para numerar las 27 letras de su alfabeto. 27 letras de su alfabeto para las unidades del 1 al 9, las decenas del 10 al 90, y las centenas del 100 al 900.
LetraValorLetraValorLetraValor
α´1ι´10ρ´100
β´2κ´20σ´200
γ´3λ´30τ´300
δ´4μ´40υ´400
ε´5ν´50φ´500
ϝ´ / ς΄ / στ´6ξ´60χ´600
ζ´7ο´70ψ´700
η´8π´80ω´800
θ´9ϙ´ / ϟ´90ϡ´900
Por ejemplo el número 241 se representa como σμα´ (200 + 40 + 1).
Para números mayores en el griego antiguo utilizaban la miríada: μυριάς (myriás) (10000). 
Arquímedes refirió el uso de la palabra "miríada" hacia sí misma para extender esta denominación hasta una miríada de miríadas (108) y llamó a los números hasta 108 los "Números primeros"; y al 108 lo llamó la "unidad de los números de segunda". Los múltiplos de esta unidad se convirtieron en los "Números segundos", hasta llegar a otra miríada de miríada. Es decir, 108•108= 1016. Este número nombrado anteriormente se convirtió en la "unidad de los números de terceros", cuyos múltiplos son los números de tercera, y así sucesivamente. Arquímedes siguió nombrado a los números de esta manera hasta llegar al 
En realidad se trata de un sistema de numeración posicional de base 10 en el que podemos encontrar reminiscencias con nuestro sistema decimal.
UMM       CM       DM         UM        C         D           U  
 106            105          104             103          102         101        100 
                                                                 nº primeros
                                                                108   (U1º)
                                                   nº segundos........ 
                                                   1016  (U2º)               
                                        nº terceros......
                                       1024 (U3º) 
Después de haber hecho esto, Arquímedes llamó a los números que había definido los "Números del primer período", y llamó al último,(10^8)^{(10^8)}la "unidad del segundo período". De esta manera, Arquímedes construyó los "Números del segundo período", tomando múltiplos de esta unidad de una forma análoga a la forma en la que los "Números del primer período" se construyeron. Continuando de esta manera, con el tiempo llegó a los "Números del período de miríadas de miríadas". El mayor número nombrado por Arquímedes fue el último número de este período, que es: 
A continuación Arquímedes se dedicó a extrapolar los granos de arena que cabrían en el Universo conocido a partir del tamaño de un grano de arena que él estimó a partir de los que caben en una semilla de amapola (el diámetro de esta semilla es 1/40 del ancho de un dedo). Después ulilizó los datos proporcionados por Aristarco de Samos basados en la teoría heliocéntrica del Sistema solar e ideas contemporáneas acerca del tamaño de la Tierra y las distancias de varios cuerpos celestes para calcular el tamañó del universo. De este modo, Arquímedes calcula que el diámetro del universo no era más que 1014 estadios (en unidades modernas, unos 2 años luz), y que, por lo tanto, no requeriría más de 8x1063 granos de arena para llenarlo).  Arquímedes concluye que el número de granos de arena que se requerirían para llenar el universo sería de 8×1063. Otra forma de escribir este número es un uno seguido de ochenta mil billones de ceros. 

NOTAS: 
  • El divulgador científico y escritor de Ciencia Ficción Isaac Asimov dedica uno de sus trabajos a estimar los granos de arena, e incluso el número de partículas subatómicas que, una al lado de otra, cabrían en el Universo estimado  por la ciencia actual. El trabajo en sí, es una declaración de su admiración por el gran matemático griego al que comenta y explica en el artículo.
  • Jason Marshall dedica un pequeño trabajo a estimar los dranos de arena que habría en todas las playas del mundo. El artículo está publicado en The Math Dude

Comentarios

Entradas populares de este blog

Hay más cosas en el cielo y la tierra, Horacio, que las que sospecha tu filosofía.

Hay más cosas en el cielo y la tierra, Horacio, que las que sospecha tu filosofía. Hamlet, Acto 1 Escena 5 En esta obra, la más profunda de Shakespeare, Horacio y Hamlet -estudiantes en la Universidad de Wittenberg- conversan sobre quienes somos y cuánto sabemos. Horacio estudia Filosofía Natural (lo más parecido a la "ciencia" de aquellos tiempos). Con la arrogancia que caracteriza a algunos estudiantes cree que el Universo está bien conocido y entendido. Hamlet, en cambio, no está tan seguro... El mundo ha cambiado mucho en estos cuatrocientos años. Las realidades descubiertas por la ciencia han eclipsado la más exhuberante imaginación de cada época. Tan solo algunos genios proféticos idearon la posibilidad de la radio, el teléfono, la TV, el automóvil, los viajes espaciales... Y, a día de hoy, al igual que nuestro universo, las cosas que no sabemos parecen expandirse hasta límites infinitos. Siendo mucho lo que sabemos ya, es infinitamente menor de lo que nos f

Cacharreando la e-bike 28 pro . 2ª parte.

Tras 11 meses reclamando atención por parte del servicio de atención al cliente de Momabike y olvido (amparado en la pandemia ...¿qué tendrá que ver, digo yo si según ellos la situación ha disparado la actividad y ventas de su empresa?) decido intentarlo de nuevo y mando una serie de correos al servicio. Tres correos que piden respuesta a las siguientes cuestiones:  1. ¿Qué fue de aquellas reclamaciones que realicé en mayo del pasado año y que me contestaban entonces con este párrafo: "Estamos experimentando una demanda muy fuerte, ya que la bicicleta se ha convertido en un producto estrella.Nuestro servicio está saturado. Le contestaremos en cuanto antes. Gracias por su comprensión." Y que, desde entonces (y mira que ha pasado tiempo) fueron olvidadas en su atención y respuesta. 2. ¿Cómo puedo conseguir un nuevo enchufe (hembra) de la batería, ya que el actual "baila" en uno de sus bornes y me desconecta la misma produciendo apagado del sistema y necesidad de pedal

El árbol del bien y no del mal.

Existe en el Museo Británico un sello sumerio llamado El cilindro de la tentación. Su fabricación está fechada en torno al 3.500 a.C. Los sellos eran cilindros perforados para poder ser llevados al cuello y girados como un rodillo para imprimir sobre la arcilla blanda figuras en relieve, con dimensiones comprendidas entre los 3 y los 12 cm. de altura y los 2 y los 5 de diámetro. En ellos se representaban escenas variadas de tipo animalístico, religiosos o de interés público. En este caso, se presenta a un hombre y una mujer separados por un eje simétrico, el Árbol de la Vida.  Los logros de las civilizaciones de la vieja Mesopotamia no dejan de sorprendernos: Desde el origen del Hombre (que atribuyen a extraterrestres) con mediación de mensajeros -dioses- (del planeta viajero Niburu), pasando por sus extraordinarios avances sociales, bélicos, arquitectónicos, agrícolas, matemáticos, astronómicos, etc. Gracias a la traducción de sus tablillas de arcilla se va conociendo su historia,